

RESTORE, ENHANCE, EXTEND & PROTECT

NANO-CLEAR[®] For Wind Turbine Blades

- Industry Award Winning, Eco-Friendly Coatings Guaranteed to Extend the Service Life of Valuable Assets
- 23x (2,300%) More Scratch Resistant Compared To A Leading Aerospace Grade Coating for Fibreglass
- Unmatched Durability, Even in the Harshest Environments

(For Oxidized or Freshly Painted Surfaces)

Nano-Clear®

v-2023.04.19-1

Assero Coating Technologies

EXCEPTIONAL SURFACE PROTECTION

Assero Coating Technologies Inc. Delivering Progressive | Collaborative | Eco-innovative / Eco-responsible | Sustainable | Proven Technology

WIND TURBINE OPERATIONS

700,000 blades in operation growing by 50,000+ blades annually. Fiberglass turbine blades and their supporting structures are subjected to conditions that lead to extreme erosion, corrosion and material fatigue. 1/3 of downtime is caused by blade failures.

TCO & ROI Impact:

- Reduced performance **5 8%**
- Shortened service lifespan 5 10 yrs
- Increased maintenance 25%

50,000 tons / year of wind blades are landfilled.

Nano-Clear[®]

Nano-Clear[®] dramatically increases service lifespan, reduces surface maintenance costs and increases ROI.

COATINGS FOR WIND TURBINE BLADES

"To protect your investment in the future, you need wind turbine coatings which protect against the erosion and corrosion of the entire structure due to the harsh environmental conditions it faces daily." CoatingPaint.com

Nano-Clear[®] reduces erosioncaused drag resistance to improve performance.

Nano-Clear[®] is 23x (2,300%) more scratch resistant as compared to a leading aerospace grade coating for fiberglass. (independently tested / validated - * see test results: pg 8, Table 2)

FOR NEWLY MANUFACTURED ASSETS OR IN-FIELD REPAIR WORK

Applied During Manufacturing Process

Nano-Clear[®] - can be integrated into current manufacturing processes.

During Maintenance Procedures

Nano-Clear[®] - can be incorporated into regular maintenance routines.

LEADING EDGE EROSION (LEE)

The front edge of a turbine blade is subjected to constant impact from airborne projectiles such as rain, ice, salt, and sand.

"The impact of liquid droplets on rigid surfaces generates water hammer pressure of several gigapascals. Later, the droplet depressurizes through lateral jets that can move two (2) to six (6) times faster than the impact velocity. Lateral jetting and water hammer pressure can exert stress beyond the solid surface's endurance limit, resulting in failure mechanisms like increased roughness, fatigue cracks, delamination, spalling, and pitting." Ducom Water Droplet Erosion Tester.

It's well known that Leading Edge Erosion is one of the largest and most costly maintenance, repair, and overhaul (MRO) issues for wind turbine blades.

NOTE - Nano-Clear[®] is the optimum solution for *entire blade surfaces*, not just leading edges.

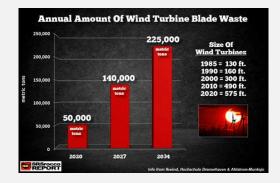
Impact On Performance

Testing has shown a drag increase of **80 - 500%** due to leading edge erosion (light-to-heavy erosion cases).

Erosion also caused a substantial reduction in lift coefficient, especially at the higher angles of attack that are experienced by wind turbines during their operation.

Aerodynamic Characteristic	Impact	Energy Capture Losses
Leading Edge Erosion	TBD	5 - 8%
Drag	80% (Low)	5%
Diag	400 - 500% (High)	25%

REDUCE CARBON FOOTPRINT / ENHANCE BRAND REPUTATION



These unrecyclable blades will lie in the ground essentially forever (or at best for many hundreds of years), as they don't degrade over time.

Operations and Maintenance (O&M) costs can total 30% of a turbine's overall annual price tag and continues to be a burden for operators.

Accelerated replacement of turbines becomes expensive: up to **2% to 4%** of the value of all wind-generated power is lost as a result of this problem. "50,000 tons of blade waste in 2020 ... will quadruple to 225,000 tons by 2034."

IMPROVING BLADE MANUFACTURING QUALITY AND THE MITIGATION OF ENVIRONMENTAL DAMAGE

"Unplanned maintenance and component failures are concern to both wind plant owners-operator and wind turbine manufacturers." Sandia Energy

NANO-CLEAR[®] PERFORMANCE FEATURES

- ✓ Reduces blade vibration / noise levels
- Increases impact resistance (superior water droplet shock absorption
- ✓ Exceptional substrate delamination prevention
- Hydrophobic surface increases water and ice repellency
- ✓ Improves airflow (less drag)

Nano-Clear[®] is 23x (2,300%) more scratch resistant as compared to a leading aerospace grade coating for fiberglass. (independently tested / validated - * see test results: pg 8, Table 2)

NANO-CLEAR[®] - THE SUSTAINABLE OPTION

- Eco-innovative / Eco-responsible, Low VOC, Green Solution
- Unmatched Durability, Even in the Harshest Environments

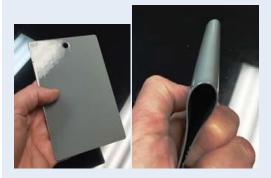
NANO-CLEAR[®] - A New & BETTER OPTION

Nano-Clear® is a unique technology that uses proprietary 3D nano-structured polymers with extreme crosslink (xxLink[™]) density.

Nano-Clear[®] Dramatically Improves **Resistance To:**

- ✓ Erosion
- Weathering
- ✓ Abrasion
- ✓ Scratching✓ Chipping
- ✓ Marring
- ✓ Chemical Attack
- ✓ UV Degradation

Client Testimonial 1


Nano-Clear®

MarAd Fleet

BEFORE Application of Nano-Clear[®]

AMAZING FLEXIBILITY!

Before / After

- Nano-Clear[®] has both remarkably high surface hardness and flexibility.
- Steel panel coated with Nano-Clear®, bends in-half without cracking or any other failure to the coating.

AFTER Application of Nano-Clear®

Note: Original colour and gloss was restored with Nano-Clear[®]. Fiberglass lifeboats were **not** repainted.

"The results are stunning. I have a meticulous bosun who rolled and back brushed the product onto the boat, and despite having far from ideal circumstances (outdoors, wind, dust) the improvement to my lifeboats is remarkable."

Master/Chief Mate - MarAd Fleet

Client Testimonial 2 Metrolinx / GO Transit

After a demanding 3 year field evaluation, the contrasting images below of the entire front fiberglass sections (including light & accessory panels) of these buses clearly demonstrate the extreme protective capabilities of **Nano-Clear**[®] (**NCI**).

(current) stone guard ... As Nano-Clear[®] has significantly reduced the number of stone chips to the front bumper, and has proven to be a more resilient stone guard, Engineering recommends that future bus deliveries, and buses that go out for refurbishment have the NCI stone guard applied."

> Michael Battiston, Equipment Engineering Officer GO Transit - Metrolink

A comprehensive System Evaluation Report from Metrolinx Engineering is available upon request.

INDUSTRIAL USERS OF NANO-CLEAR[®]

INDUSTRY RECOGNITION

Nano-Clear® has been recognized for its innovative engineering by:

- NACE MP 2019 / 2020 Corrosion Innovation of the Year Award NACE (the National Association of Corrosion Engineers) sets the standards for surface preparation, coating selection, coating application, painting contractor certification, and testing.
- Frost & Sullivan Technology Leadership Award 2020 Frost & Sullivan is the premiere business consulting firm to the Paints and Coatings Industry.
- PaintSquare Prestige Award 2020 (Top Product: Coatings for Steel) PaintSquare is the premier industry publication to the Paints & Coatings Industry.

To arrange a Nano-Clear[®] application demonstration, contact **Assero** at:

*1.888.588.6986 or info@assero.co

ASSERO COATING TECHNOLOGIES

Assero Coating Technologies delivers Exceptional Surface Protection[™] which extends the useful service life of valuable assets that operate in harsh environments. Assero is built around an ethos of delivering eco-innovative / eco-responsible, sustainable, green chemistry solutions with a line of Protective Clearcoats that reduce damage to the environment.

Nano-Clear[®] Third Party Test Results

Chemistry: 3D Nano-Structured Polyurethane / Polyurea Hybrid

High Cross-Link 3D*Molecules Inside*

Nano-Clea

TABLE 1

TEST METHOD DETAILS		
PRIMARY SPECIFICATIONS	TEST STANDARD	RESULTS
VOC	ASTM D3960	1.25 lb / gal / -150 g/l
Recommended Dry Film Thickness (DFT)	ASTM D5796	1.0mil - 2.5mils (/ 50.4µm to 63.5µm)
Coverage: 1 US Gal / 3.8 Ltr.	Nanovere Inhouse	1,122ft ² @1.0 mil
Specular Gloss: @ 20º / 60º	ASTM D523	86.0/92.2
IN SERVICE PHYSICAL DAMAGE RESISTANCE	TEST STANDARD	RESULTS
Abrasion Resistance by Taber: CS-17, 1 kg, 1,000 cycles	ASTM D4060	8.4 mg loss
Coating Hardness by Pencil Test: Scratch	ASTM D3363	4H
Coating Hardness by Pencil Test: Scratch	SASO 2833	2500 gm
Coating Hardness by Pencil Test: Gouge	ASTM D3363	5H
Coating Hardness by Pendulum Damping: Persoz	ASTM D4366	> 250 oscillations
Coating Rapid Deformation by Impact: 18°C Direct in./lbs.	ASTM D2794	50 Pass / 60 Fail
Coating Rapid Deformation by Impact: 18°C Reverse in./lbs.	ASTM D2794	10 Pass/20 Fail
Coating Rapid Deformation: Impact Strength	ASTM D2794	145 kg - cm
Impact Resistance: Single or Multi-coat Systems	SASO ISO 3248	1kg-160cm
Chip Resistance of Coatings: 23°C / 73.4°F @ 2.0 mils DFT	ASTM D3170	7A
Chip Resistance of Coatings: -29°C / -9.4°F @ 2.0 mils DFT	ASTM D3170	7B
Abrasion Resistance by Falling Abrasion: 100 liters	ASTM D968	Pass
Mar Resistance of Organic Coatings	ASTM D5178	5.0 kg
Flexibility - Conical Mandrel Bend	ATSM D522	1/4" Pass
Flexibility - Cylindrical Mandrel Bend	ASTM D522	Zero (0) - T
ENVIRONMENTAL RESISTANCE	TEST STANDARD	RESULTS
	SAE J1960	100% Gloss Retention
Controlled Xenon Arc-Lamp-Exposure Resistance: 4,000 hrs	ASTMG155	99% Gloss Retention
Fluorescent UV-Condensation Exposure: QUV 313 > 1,500 hrs	ASTM D4587	100% Gloss Retention
Water Immersion Resistance: 240hrs @50°C / 122°F	ISO 2812-2	Pass
Humidity Testing: @100% RH, 100°F / 37.8°C - 240 hrs	ASTMD1735-02	No loss of adhesion - No change
Corrosion Resistance: PASS240hrs @50°C / 122°F	JIS H8502	Pass
Salt Spray Fog: 6,360 hrs	ASTM B117 / 2018	No corrosion points - Approved
Thermal Shock Test for Adhesion: Heat: @ 100°F / 37.8°C for 3 hrs, Freeze for 3 hrs, Steam Blast for 30 Sec	GM9525P	No loss of adhesion - No Change
CHEMICAL RESISTANCE	TEST STANDARD	RESULTS
Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Sulfuric Acid	ASTM D 1308	No effect
Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Hydrochloric Acid	ASTM D 1308	No effect
Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Sodium Hydroxide	ASTM D 1308	No effect
Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Ammonium Hydroxide	ASTM D 1308	No effect
Effect of Household Chemicals on Clear & Pigmented Coatings: Isopropyl Alcohol	ASTM D 1308	No effect
Effect of Household Chemicals on Clear & Pigmented Coatings: Xylene	ASTM D 1308	No effect
Immersion Testing of Industrial Protective Coatings: Skydrol [®] 500Fluid	ASTM D6943-A	No effect
Measuring MEK Resistance by Solvent Rubs: 1,500 Double Rubs	ASTM D4752	No effect
Measuring MEK Resistance by Solvent Rubs: 1,500 Double Rubs FIRE RESISTANCE The Resistance Testing of Building Materials 1,500 Double Rubs	ASTM D4/52 TEST STANDARD ASTM E84/BS476	No effect RESULTS Class1(Excellent)

TABLE 2

	DMA (Dynamic Mech	nanical Analysis)									
	SAMPLE PANEL TESTED	E' @ 23ºC/73.4ºI	FMPA	XLD (Kmols/cc)		Tg (⁰C)	Based on historical data XLD has a 95% confidence interval of ~ +/- 0.5				
36	Nano-Clear [®] (NCI)	2110			2.17	57.7	Based on historical data Tg has a 95% confidence interval of ~ +/- 2.5				
	UNIAXIAL EXTENSION	(INSTRON)					-				
	SAMPLE PANEL TESTED	YOUNG'S MODULUS MPa	YIEI STRAI		YIELD STRESS MPa	STRESS @ BREAK %	STRAIN @ BREAK %	TOUGHNESS MPa			
37	Nano-Clear [®] (NCI)	1506	4.5	9	51.6	52.7	52.4	5.09			
38	95% *CI +/-	35	0.1	4	1.6	1.3	1.5	0.59	*Confidence Intervals based on 5 tests of this sample		

· _____

Q. What is **DMA**?

A. Dynamic Mechanical Analysis is performed by a Dynamic Mechanical Analyzer.

Q. What does a DMA do?

A. DMA measures the mechanical/rheological (crosslink density; XLD) properties of a material as a function of time, frequency, temperature, stress, and strain.
NOTE: The Dynamic Mechanical Analyzer used for Table 2 tests, was a TA Instrument Q800 unit.

Strain

Stiffness Damping factor nsition temperatures s (E, G) / Compliance (J)

TABLE 3

	T	EST METHO		TES	T STANDARD				
	The Japanese Industrial Standard is a quantitative antimicrobial surface test method that tests for antimicrobial activity and efficacy					non-GLP Modified JIS Z 2801Study			
	Test Microorganism	Contact Time	Test Substrate	Replicate	CFU/Carrier	Average CFU/Carrier		ent (%) Reduction npared to 24 Hour Control	Log10 Reduction Compared to 24 Hour Control
Ī		Time	Control	1	3.30E+05				
39		Zero	Glass	2	2.60E+05	2.80E+05		N/A	N/A
	E. coli	2010	Substrate	3	2.50E+05				
	ATCC 8739		Control	1	3.70E+05				
40			Glass	2	3.80E+05	3.97+05		N/A	N/A
		24	Substrate	3	4.40E+05				
	S. aureus	Hours	Nano-Clear®	1	1.63E+02				
41	ATCC 6538		NCI 4.0	2	1.48E+02	4.87E+02		99.9993%	5.59
			1401 4.0	3	1.15E+03				
			Nano-Clear [®]	1	3.03E+01				
42			NCI 5.0	2	6.00E+00	1.53E+01		99.99998%	6.87
			NOT 5.0	3	9.50E+00				

TABLE 4

ANTI-ICE SCREENING	ז		
TEST SAMPLE	T-PANEL	NUMBER	SCOPE
INFO	(4" X 12")	OF	OF
INFO	SUBSTRATE	PANELS TESTED	TESTING
Control	Aluminum	2	Contact angle - ice de-bond (shedding)
NCI +NCFP@5%	Aluminum	1	Contact angle - ice de-bond (shedding)
VX-SC	Aluminum	1	Contact angle - ice de-bond (shedding)
VX+SC+5% Fluoropolymer	Aluminum	2	Contact angle - ice de-bond (shedding)
NCI+NCIM@30%+NCFP@5%	Aluminum	2	Contact angle - ice de-bond (shedding)

ICE / FROST BUILD TESTING

- 1. Test sample panels were attached to the evapcooler's fins along with thermo-couplers.
- 2. Freezer door propped open by .5" for an 1 hour.
- 3. Two pans of 40°C tap water (500 grams) was added and the freezer door was then closed shut.
- 4. The closed freezer was run for 16 hours and monitored using a picolog with thermocouplers and a computer.
- 5. After 16 hours of run time the amount of ice/frost generated on the test panels was evaluated.

	CONTACT ANGLE T	EST RESULTS	ICE DE-BOND (SHEDDING) TEST RESULTS			
TEST SERIES 1	TEST SAMPLE CONTACT INFO ANGLE		TEST SERIES 2	TEST SAMPLE INFO	ICE DE-BOND (SHEDDING) TIME IN SECONDS	
43	Control	43.12°	48	Control	58s	
44	NCI +NCFP@5%	102.41°	49	NCI +NCFP@5%	32s	
45	VX-SC	103.15° 50	50	VX-SC	49s	
46	VX+SC+5% Fluoropolymer	98.535°	51	VX+SC+5% Fluoropolymer	47s	
47	NCI+NCIM@30%+NCFP@5%	101.07°	52	NCI+NCIM@30%+NCFP@5%	40.5s	

TABLE 5

SCRATCH TESTING PARAMETERS - ASTM D7027									
SCRATCH MODE	MAX. LOAD (N)	SCRATCH LENGTH (MM)	SCRATCH SPEED (mm/sec)	LOADING RATE (N/min)	PRE/POST SCAN LOAD (N)	SCRATCH TRACKS PER SAMPLE	SCRATCH TIP TYPE	TIP MATERIAL	SCRATCH TIP RADIUS (µM)
Progressive	100	2	2	200	1	3	Sphero-conical	Diamond	20

TEST REQUIREMENTS

1. Room temperature micro-scratch experiment using a micro-scratch technique.

- 2. The goal is to study and compare coating adhesion, strength /
- scratch resistance of the coatings through progressive scratch tests. 3. The testing procedures follow a modified ASTM D7027 standard to scratch polymeric thin coatings with a diamond tip.

SYSTEM EMPLOYED FOR TESTING

- 1. An Anton Parr Revtest (Macro) Scratch System.
- 2. The system was calibrated on 04/30/2021.
- 3. A 100 µm radius diamond spherical tip was employed for the scratch
- measurements. 4. The system and the scratch tip were validated on a TiN reference
- sample before the experiments were conducted on the Assero supplied samples conducted as a blind test (X vs Y)

	COMPARISON FAILURE ROO	LC1	OPTIC						
	TEST 1 SAMPLES			DATA 1	DATA 2	STD DEV			
53	X*	38.393	38.032	37.962	38.129	0.231			
54	Y**	43.622	42.386	45.551	43.853	1.595			
	NOTE: X* (submitted sample) Nano-Clear [®] Gel-coated fiberglass unsanded pre-application								

	COMPARISON O FAILURE HEATE COOLED OVERN	LC1	OPTIC					
	TEST 2 SAMPLES	DATA 1	DATA 2	DATA 3	MEAN	STD DEV		
55	Х*	38.486	32.869	35.433	35.929	3.336		
56	Y**	1.294	1.338	1.963	1.532	0.374		
	**V (automitted comple) BASE DC02 conded Cal costed fibragings are combination							

Y (submitted sample) BASF DC92 sanded Gel-coated fibreglass pre-application

Why Micro-Scratch Testing?

"Data from the nano-scratch test also proved best for determining how well the coating responded to physical assault based on its crosslink density, the measure of how tightly the polymer components are bound together," *Sung said.

"With this molecular-level understanding, clearcoat formulas can be improved so that they yield materials dense enough to be scratch resistant and resilient but not so hard that they cannot be worked with easily."

"The researchers concluded that to get the truest evaluation of clearcoat performance, the nano-, micro- and macro-scratch tests should be conducted in conjunction with the current industry standard methods." *Li-Piin Sung NIST research Physicist

TABLE 6

	TEST METHOD DETAILS			
	OPTICAL PROPERTIES	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
57	Specular Gloss: @ 20º - 60º - 85	ASTM D534	0.7 - 3.6 - 7.4	0.6 - 1.3 - 7.8
58	Calculating color differences from instrumentally color measured color coordinates: L-, a-, b-	ASTM D2244	66.66 - 6.02 - 20.71	66.66 - 6.02 - 20.71
59	Measurement of spectral absorptance, reflectance, and transmittance: IR signature	ASTM E-903	PASS	PASS
	PHYSICAL PROPERTIES	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
60	Rating Adhesion by Tape Test	ASTM D3359	5B	5B
61	Rating Film Hardness by Pencil Test	ASTM D3363	2B	>6H
	CHEMICAL AND PHYSICAL DAMAGE RESISTANCE	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
62	Acid Spot Resistance	MIL-DTL-53039E Sec 4.6.24	No Effect	No Effect
	MEK Resistance			
63	Double rubs to substrate	ASTM D4752	>200	>1,500
64	Double rubs to start of coating Dissolution	AOTIN D4132	20	>1,500
65 66 67	Water Immersion Testing: Visual Observation Pencil Hardness Adhesion	MIL-DTL-53039 Sec 4.6.24	No Effect 4B 5B	No Effect >6H 5B

INTRODUCING A NEW APPROACH TO CARC

"The effectiveness of US military forces is highly dependent on the readiness (and safety) of the equipment and vehicles they use. Spray-applied coatings are used for many types of equipment, components and vehicles including aircraft, ground vehicles, water-borne vessels and ordnance. Improved.....quality therefore results in reduced cost and readiness." Lea Ann Schellhorn, Iowa Waste Reduction Center, Cedar Fall - Spray Technique Analysis and Research for Defense (STAR4D)

Multi-Functional Nanocoatings with Remarkable Properties

High Crosslink Density Reduced Surface Maintenance Nano-Structured Polymer Architecture Oil & Dirt Repellency P High X-Link Density (DMA tested) Water Repellency Ice Repellency (NCIF) Scratch, Chemical, UV Resistance Algae Repellency **Excellent Corrosion Resistance** \triangleright **Customized Formulations Reduced Cleaning** Nano-Clear **Application Parameters Extreme Weathering Convenient One Component** \triangleright Polyurethane/Polyurea Hybrid Conventional, Airless or HVLP High UV Resistance Applied over epoxy topcoatings High Crosslink Density (Macropoxy 646, Interzone 954...), Service Range: - 40°F to 400°F polyurethane topcoatings, gelcoatings, High Chemical Resistance fiberglass, powder coatings, cement...

Assero Coating Technologies

20 De Boers Drive, Suite 202 Toronto, Ontario, M3J 0H1, Canada
1.888.588.6986
info@assero.co

www.assero.co

© 2023 Assero Coating Technologies Inc. All rights reserved. Nano-Clear® is a registered trademark of Nanovere Technologies, LLC. All other trademarks are property of their respective owners. Specifications are subject to change.