

NANO-CLEAR® FOR INDUSTRIAL APPLICATIONS

- Industry Award Winning, Eco-Friendly Coatings Guaranteed to Extend the Service Life of Valuable Assets
- Unmatched Durability, Even in the Harshest Environments

(For Oxidized or Newly Painted Surfaces)

v-2023.04.19-1

Assero Coating Technologies

Assero Coating Technologies Inc.

Delivering Progressive | Collaborative | Eco-innovative / Eco-responsible | Sustainable | Proven Technology

INDUSTRIAL MARKETS

Industrial asset owners commonly apply protective coatings over metal surfaces to mitigate the damaging effects from various environmental factors, to maintain optimal performance, and to extend asset service life thereby increasing profitability. However, conventional industrial coatings "alone" are still very susceptible to:

- Corrosion
- Rain Erosion
- UV Degradation
- Weathering
- Moisture / Water Intrusion
- Acid Rain / Chemical Damage
- Scratch / Abrasion / Chip Damage
- Normal Wear & Tear

What Is Needed?

- A combined basecoat clearcoat system with a multifunctional clearcoat that protects surfaces more thoroughly than any existing technology.
- A permanent surface coating that enhances and extends the surface life of freshly painted or highly oxidized paint by 10+ years.

Nano-Clear®

Nano-Clear® (NCI) dramatically improves surface protection and brand image while significantly reducing surface maintenance expenses.

- Extreme Corrosion Resistance
 No Rust after 6,360 Hour Salt Spray Testing
- Extreme Abrasion Resistance
 Only 8.4 mg Loss after 1000 Cycles, 1 kg
- Low VOC
 1.25 lbs / Gal (150 g / L)
- Weatherproof Gloss
 99% Gloss Retention after 4000 Hours; Xenon WOM
- 1K Coating, Ambient (Humidity) Cured
 Dry-To-Handle in 4 Hours; Return to Service in 24 Hours
- Reduce Re-Paint Cycle by 2X 3X
 As Documented in Production Case Studies
- Improve Brand Appearance
 Achieve Deeper Colors & Dramatically Higher Gloss
- Achieve Lower Operating Costs
 By Reducing Maintenance Time & Extending
 Recoat Cycle by 10+ Years

What Makes Nano-Clear® Unique?

Nano-Engineering (not nano-particles) Creates Exceptional Crosslink Density

Nano-Clear[®] NCI is manufactured using proprietary 3D nano-structured polymers (*not* nano-particles) which results in extreme crosslink density.

NCI dramatically improves corrosion, weathering, abrasion, scratching, chipping, marring, chemical & UV resistance and reduces surface maintenance. NCI penetrates deep into the pores of freshly painted or highly oxidized paints to enhance color, improve gloss, and significantly increase surface hardness.

Nano-Clear® is a one-component, humidity cured, highly cross-linked, polyurethane/polyurea, hybrid nanocoating.

With this exceptionally high crosslink density, we have the test data to prove that NCI is the world's best all-around clearcoat for resistance to scratches, chips, abrasion, chemicals, weathering, and more. Please see the back cover for test results or visit www.assero.co/tests.

AMAZING FLEXIBILITY!

Before / After

- √ Nano-Clear[®] has both remarkably high surface hardness and flexibility.
- ✓ Steel panel coated with Nano-Clear®, bends in-half without cracking or any other failure to the coating.

Why is Crosslink Density So Important?

Coatings contain "building blocks" with functional groups. The chemical reaction of these groups during curing forms a network. In most traditional polymers, the network is a linear chain of molecules with low crosslink density.

Conversely, we "nano-structured" our clearcoat to have a 3D molecular architecture. The 3D polymer network has an exponentially higher number of crosslinked sites. The result is a tightly knit mesh with unprecedented DMA density.

High crosslink density provides highly functional surface properties, including unmatched corrosion resistance, scratch resistance, chemical resistance and UV durability. It also means low surface energy, repelling water (hydrophobic) and aiding in the release of ice, dirt, brakedust, and even concrete dust.

Linear chain of molecules

3D molecular architecture

BEFORE Application of Nano-Clear®

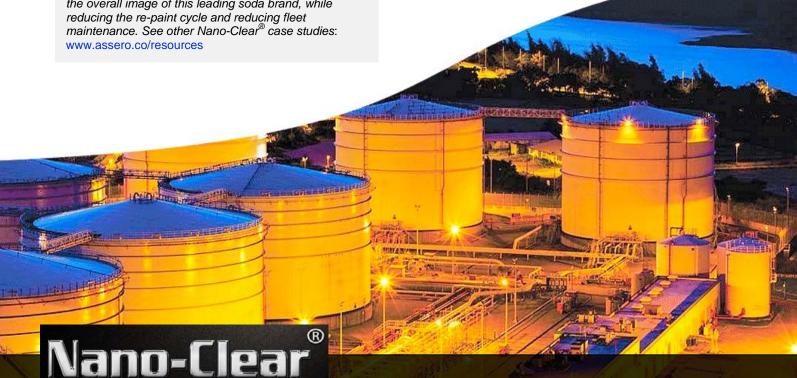
AFTER Application of Nano-Clear®

Even sticky concrete dust releases easily from Nano-Clear® NCI.

Unrivaled Performance Enhancement for Newly Painted or Highly Oxidized Coatings

For decades, conventional coating systems have relied on numerous variations of the same linear chain polymers as noted above. As a result, in order to properly protect equipment, it's necessary for industrial customers to perform frequent, costly, labour intensive maintenance cycles every 6 months to 5 years which includes surface preparation & repair, and then repaint & recoat using the same conventional technology.

Nano-Clear® Coatings on the other hand, are designed from the bottom up with nano-structuring properties and no matter how badly oxidized your existing coating is, Nano-Clear® NCI for Industrial Applications will restore its color and provide unmatched surface protection.


Put Simply: NCI restores the color, gloss, surface hardness and extends the surface life of conventional coatings by 10+ years.

Nano-Clear® NCI is also designed to be applied directly over freshly coated surfaces including 2K epoxies, 2K polyurethanes and powder coatings.

Problem: Leading soda pop company owns a global fleet of distribution trucks in need of paint restoration.

Solution: Nano-Clear® is used to dramatically improve the overall image of this leading soda brand, while

How Does Nano-Clear® Enhance Color & Physical Properties?

NCI has a low (200 cps) viscosity, so it penetrates deep into the smallest pores of newly painted of oxidized coatings, **turning the white, chalked layers transparent**, allowing the original underlying color to show through while fortifying/hardening the surface.

Humidity-cured at ambient temperatures, NCI quickly hardens and fortifies the painted surface, "locking-in" color and preventing future chalking with its long-term UV absorbers.

Please note: NCI must be applied over the existing coating system before the coating has deteriorated into a powdered, peeled and/or eroding state. NCI *is not a rust converter*. Rust or peeling paints must be removed and repainted first (prior to applying NCI) with a coating such as a high-solids, two-component epoxy.

For additional details, please review the Nano-Clear® NCI Technical Data Sheet at: www.assero.co/resources.

Industrial Users of Nano-Clear[®]

ODEBRECHT
Oil & Gas

Where Can Nano-Clear® Be Used?

On New or Highly Oxidized Coatings:

Nano-Clear® (NCI) has been engineered to be applied over 2K epoxies, 2K polyurethanes, powder coatings, polyesters, gel coats, e-coats, latexes, fibreglass, and anodized aluminum (to prevent filiform corrosion, etc.).

For Industrial Applications:

NCI is the premiere solution for a diverse range of applications:

- Lifeboats
- Cargo Ships / Ocean Going Vessels
- Chemical, Oil and Gas Storage Tanks
- Pumps & Valves
- Locomotives, Tank & Chemical Railcars
- Oil & Gas Pipelines
- Oil Field Platforms, Pipes and Tubes
- Drinking Water Pipelines
- Epoxy Coated Floors
- Shipping Containers
- Generators
- High & Low Voltage Utility Boxes

- Bridge Structures
- Mass Transit Vehicles & Equipment
- Emergency Response Vehicles & Equipment
- Concrete Warehouse Floors
- Painted & Concrete Building Structures
- Interior and Exterior Concrete / Wood Architectural Structures
- Agriculture, Construction, & Earth Moving Equipment
- Aircraft and Equipment
- Naval and Military Air, Ground & Marine Equipment
- And much more.

Problem: Sterling Crane was searching for an effective and easy option of restoring paint that was heavily faded for their fleet of mobile cranes.

Solution: Nano-Clear[®] was used to restore, as well as dramatically improve the level of surface protection. "By using NCI, we've saved thousands of dollars restoring vs repainting our cranes." See other Nano-Clear[®] case studies: www.assero.co/resources

Industry Recognition

Nano-Clear® has been recognized for its innovative engineering by:

- NACE MP 2019 / 2020 Corrosion Innovation of the Year Award NACE (the National Association of Corrosion Engineers) sets the standards for surface preparation, coating selection, coating application, painting contractor certification, and testing.
- Frost & Sullivan Technology Leadership Award 2020 Frost & Sullivan is the premiere business consulting firm to the Paints and Coatings Industry.
- PaintSquare Prestige Award 2020 (Top Product: Coatings for Steel) PaintSquare is the premier industry publication to the Paints & Coatings Industry.

To arrange a Nano-Clear® application demonstration, contact **\ssero** at:

info@assero.co

ASSERO COATING TECHNOLOGIES

Assero Coating Technologies delivers Exceptional Surface Protection[™] which extends the useful service life of valuable assets that operate in harsh environments. Assero is built around an ethos of delivering eco-innovative / eco-responsible, sustainable, green chemistry solutions with a line of Protective Clearcoats that reduce damage to the environment.

Nano-Clear® Third Party Test Results

Chemistry: 3D Nano-Structured Polyurethane / Polyurea Hybrid

High Cross-Link 3D° Molecules Inside

TABLE 1

	TEST METHOD DETAILS			
	PRIMARY SPECIFICATIONS	TEST STANDARD	RESULTS	l
1	VOC	ASTM D3960	1.25 lb / gal / -150 g/l	1
2	Recommended Dry Film Thickness (DFT)	ASTM D5796	1.0 mil - 2.5 mils (/ 50.4 µm to 63.5 µm)	2
3	Coverage: 1 US Gal / 3.8 Ltr.	Nanovere Inhouse	1,122ft2 @1.0 mil	3
4	Specular Gloss: @ 20° / 60°	ASTM D523	86.0/92.2	4
	IN SERVICE PHYSICAL DAMAGE RESISTANCE	TEST STANDARD	RESULTS	İ
5	Abrasion Resistance by Taber: CS-17, 1 kg, 1,000 cycles	ASTM D4060	8.4 mg loss	5
6	Coating Hardness by Pencil Test: Scratch	ASTM D3363	4H	6
7	Coating Hardness by Pencil Test: Scratch	SASO 2833	2500 gm	7
8	Coating Hardness by Pencil Test: Gouge	ASTM D3363	5H	8
9	Coating Hardness by Pendulum Damping: Persoz	ASTM D4366	> 250 oscillations	9
10	Coating Rapid Deformation by Impact: 18°C Direct in./lbs.	ASTM D2794	50 Pass / 60 Fail	10
11	Coating Rapid Deformation by Impact: 18°C Reverse in./lbs.	ASTM D2794	10 Pass / 20 Fail	11
12	Coating Rapid Deformation: Impact Strength	ASTM D2794	145 kg - cm	12
13	Impact Resistance: Single or Multi-coat Systems	SASO ISO 3248	1kg-160cm	13
14	Chip Resistance of Coatings: 23°C / 73.4°F @ 2.0 mils DFT	ASTM D3170	7A	14
15	Chip Resistance of Coatings: -29°C/-9.4°F @ 2.0 mils DFT	ASTM D3170	7B	15
16	Abrasion Resistance by Falling Abrasion: 100 liters	ASTM D968	Pass	16
17	Mar Resistance of Organic Coatings	ASTM D5178	5.0 kg	17
18	Flexibility - Conical Mandrel Bend	ATSM D522	1/4" Pass	18
19	Flexibility - Cylindrical Mandrel Bend	ASTM D522	Zero (0) - T	19
	ENVIRONMENTAL RESISTANCE	TEST STANDARD	RESULTS	l
20	Controlled Vener Are Levy Conserve Besistances 4 000 hrs	SAE J1960	100% Gloss Retention	20
20	Controlled Xenon Arc-Lamp-Exposure Resistance: 4,000 hrs	ASTMG155	99% Gloss Retention	İ
21	Fluorescent UV-Condensation Exposure: QUV 313 > 1,500 hrs	ASTM D4587	100% Gloss Retention	21
22	Water Immersion Resistance: 240hrs @50°C / 122°F	ISO 2812-2	Pass	22
23	Humidity Testing: @100% RH,100°F / 37.8°C -240 hrs	ASTMD1735-02	No loss of adhesion - No change	23
24	Corrosion Resistance: PASS240hrs @50°C / 122°F	JIS H8502	Pass	24
25	Salt Spray Fog: 6,360 hrs	ASTM B117 / 2018	No corrosion points - Approved	25
26	Thermal Shock Test for Adhesion: Heat: @ 100°F/37.8°C for 3 hrs, Freeze for 3 hrs, Steam Blast	GM9525P	No loss of adhesion - No Change	26
	for 30 Sec		•	į
	CHEMICAL RESISTANCE	TEST STANDARD	RESULTS	l
27	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Sulfuric Acid	ASTM D 1308	No effect	27
28	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Hydrochloric Acid	ASTM D 1308	No effect	28
29	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Sodium Hydroxide	ASTM D 1308	No effect	29
30	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Ammonium Hydroxide	ASTM D 1308	No effect	30
31	Effect of Household Chemicals on Clear & Pigmented Coatings: Isopropyl Alcohol	ASTM D 1308	No effect	31
32	Effect of Household Chemicals on Clear & Pigmented Coatings: Xylene	ASTM D 1308	No effect	32
33	Immersion Testing of Industrial Protective Coatings: Skydrol® 500Fluid	ASTM D6943-A	No effect	33
34	Measuring MEK Resistance by Solvent Rubs: 1,500 Double Rubs	ASTM D4752	No effect	34
	FIRE RESISTANCE	TEST STANDARD	RESULTS	l
35	Fire Resistance Testing of Building Materials	ASTM E84 / BS476	Class1(Excellent)	35

TABLE 2

36

	DMA (Dynamic Mechanical Analysis)									
	SAMPLE PANEL TESTED	E' @ 23°C/73.4°F	MPA	XLD	(Kmols/cc)	Tg (ºC)	Based on historical data XLD has a 95% confidence interval of ~ +/-			
	Nano-Clear® (NCI)	2110		2.17		57.7	Based on historical data Tg has a 95% confidence interval of ~ +/- 2.5			
UNIAXIAL EXTENSION (INSTRON)							•		_	
	SAMPLE PANEL	YOUNG'S MODULUS	YIE		YIELD STRESS	STRESS @	STRAIN @	TOUGHNESS		

 SAMPLE PANEL TESTED
 YOUNG'S MODULUS STRAIN % MPa
 YIELD STRESS % MPa
 STRESS % BREAK % BREAK % MPa
 TOUGHNESS MPa

 Nano-Clear® (NCI)
 1506
 4.59
 51.6
 52.7
 52.4
 5.09

 95% *CI +/ 35
 0.14
 1.6
 1.3
 1.5
 0.59

*Confidence Intervals based on 5 tests of this sample

- Q. What is DMA?
- A. Dynamic Mechanical Analysis is performed by a Dynamic Mechanical Analyzer.
- Q. What does a DMA do?
- A. DMA measures the mechanical/rheological (crosslink density; XLD) properties of a material as a function of time, frequency, temperature, stress, and strain.

NOTE: The Dynamic Mechanical Analyzer used for Table 2 tests, was a TA Instrument Q800 unit.

TABLE 3

ĺ	TEST METHOD DETAILS The Japanese Industrial Standard is a quantitative antimicrobial surface test method that tests for antimicrobial activity and efficacy				TEST STANDARD				
					non-GLP Modified JIS Z 2801Study				
	Test Microorganism	Contact Time	Test Substrate	Replicate	CFU/Carrier	Average CFU/Carrier	Percent (%) Reduction Compared to 24 Hour Control	Log10 Reduction Compared to 24 Hour Control	
		Time	Control	1	3.30E+05				
39		Zero	Glass	2	2.60E+05	2.80E+05	N/A	N/A	
	E. coli	2010	Substrate	3	2.50E+05				
	ATCC 8739		Control	1	3.70E+05				
40			Glass	2	3.80E+05	3.97+05	N/A	N/A	
		24	Substrate	3	4.40E+05				
	S. aureus	Hours	Nano-Clear®	1	1.63E+02				
41	ATCC 6538		NCI 4.0	2	1.48E+02	4.87E+02	99.9993%	5.59	
			NCI 4.0	3	1.15E+03				
			Nano-Clear®	1	3.03E+01				
42			Nano-Clear NCI 5.0	2	6.00E+00	1.53E+01	99.99998%	6.87	
			1401 3.0	3	9.50E+00				

TABLE 4

ANTI-ICE SCREENING	3		
TEST SAMPLE INFO	T-PANEL (4" X 12") SUBSTRATE	NUMBER OF PANELS TESTED	SCOPE OF TESTING
Control	Aluminum	2	Contact angle - ice de-bond (shedding)
NCI +NCFP@5%	Aluminum	1	Contact angle - ice de-bond (shedding)
VX-SC	Aluminum	1	Contact angle - ice de-bond (shedding)
VX+SC+5% Fluoropolymer	Aluminum	2	Contact angle - ice de-bond (shedding)
NCI+NCIM@30%+NCFP@5%	Aluminum	2	Contact angle - ice de-bond (shedding)

TEST

SERIE

ICE / FROST BUILD TESTING

- Test sample panels were attached to the evapcooler's fins along with thermo-couplers.
- 2. Freezer door propped open by .5" for an 1 hour.
- 3. Two pans of 40°C tap water (500 grams) was added and the freezer door was then closed shut.
- 4. The closed freezer was run for 16 hours and monitored using a picolog with thermocouplers and a computer.
- **5.** After 16 hours of run time the amount of ice/frost generated on the test panels was evaluated.

	CONTACT ANGLE TEST RESULTS						
TEST SERIES 1	TEST SAMPLE INFO	CONTACT ANGLE					
43	Control	43.12°					
44	NCI +NCFP@5%	102.41°					
45	VX-SC	103.15°					
46	VX+SC+5% Fluoropolymer	98.535°					
47	NCI+NCIM@30%+NCFP@5%	101.07°					

	ICE DE-BOND (SHEDDING) TEST RESULTS							
S	TEST SAMPLE INFO	ICE DE-BOND (SHEDDING) TIME IN SECONDS						
48	Control	58s						
49	NCI +NCFP@5%	32s						
50	VX-SC	49s						
51	VX+SC+5% Fluoropolymer	47s						
52	NCI+NCIM@30%+NCFP@5%	40.5s						

TABLE 5

SCRATCH TESTING PARAMETERS - ASTM D7027									
SCRATCH MODE	MAX. LOAD (N)	SCRATCH LENGTH (MM)	SCRATCH SPEED (mm/sec)	LOADING RATE (N/min)	PRE/POST SCAN LOAD (N)	SCRATCH TRACKS PER SAMPLE	SCRATCH TIP TYPE	TIP MATERIAL	SCRATCH TIP RADIUS (µM)
Progressive	100	2	2	200	1	3	Sphero-conical	Diamond	20

56

TEST REQUIREMENTS

- 1. Room temperature micro-scratch experiment using a micro-scratch technique.
- The goal is to study and compare coating adhesion, strength / scratch resistance of the coatings through progressive scratch tests.
- The testing procedures follow a modified ASTM D7027 standard to scratch polymeric thin coatings with a diamond tip.

SYSTEM EMPLOYED FOR TESTING

- 1. An Anton Parr Revtest (Macro) Scratch System.
- 2. The system was calibrated on 04/30/2021.
- 3. A 100 µm radius diamond spherical tip was employed for the scratch measurements.
- 4. The system and the scratch tip were validated on a TiN reference sample before the experiments were conducted on the Assero supplied samples conducted as a blind test (X vs Y)

	COMPARISON FAILURE ROO	LC1	OPTIC			
	TEST 1 SAMPLES			DATA 1	DATA 2	STD DEV
53	Х*	38.393	38.032	37.962	38.129	0.231
54	Υ**	43.622	42.386	45.551	43.853	1.595

NOTE: X* (submitted sample) Nano-Clear® Gel-coated fiberglass unsanded pre-application

	COMPARISON OF FAILURE HEATE COOLED OVERN	LC1	OPTIC			
	TEST 2 SAMPLES	DATA 1	DATA 2	DATA 3	MEAN	STD DEV
Ī	Х*	38.486	32.869	35.433	35.929	3.336
	Y**	1.294	1.338	1.963	1.532	0.374

**Y (submitted sample) BASF DC92 sanded Gel-coated fibreglass pre-application

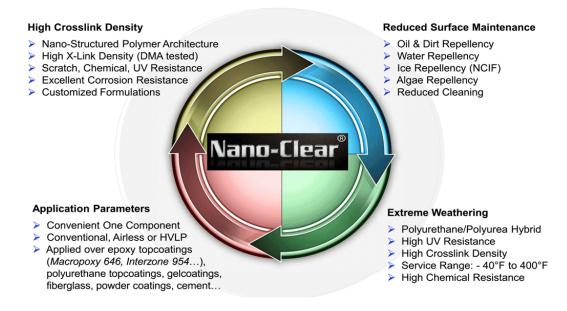
Why Micro-Scratch Testing?

"Data from the nano-scratch test also proved best for determining how well the coating responded to physical assault based on its crosslink density, the measure of how tightly the polymer components are bound together," *Sung said.

"With this molecular-level understanding, clearcoat formulas can be improved so that they yield materials dense enough to be scratch resistant and resilient but not so hard that they cannot be worked with easily."

"The researchers concluded that to get the truest evaluation of clearcoat performance, the nano-, micro- and macro-scratch tests should be conducted in conjunction with the current industry standard methods." *Li-Piin Sung NIST research Physicist

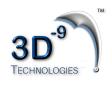
TABLE 6


	TEST METHOD DETAILS	1		
	OPTICAL PROPERTIES	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
57	Specular Gloss: @ 20° - 60° - 85	ASTM D534	0.7 - 3.6 - 7.4	0.6 - 1.3 - 7.8
8	Calculating color differences from instrumentally color measured color coordinates: L-, a-, b-	ASTM D2244	66.66 - 6.02 - 20.71	66.66 - 6.02 - 20.71
59	Measurement of spectral absorptance, reflectance, and transmittance: IR signature	ASTM E-903	PASS	PASS
	PHYSICAL PROPERTIES	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
60	Rating Adhesion by Tape Test	ASTM D3359	5B	5B
31	Rating Film Hardness by Pencil Test	ASTM D3363	2B	>6H
	CHEMICAL AND PHYSICAL DAMAGE RESISTANCE	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
62	Acid Spot Resistance	MIL-DTL-53039E Sec 4.6.24	No Effect	No Effect
63 64	MEK Resistance Double rubs to substrate Double rubs to start of coating Dissolution	ASTM D4752	>200 20	>1,500 >1,500
65 66 67	Water Immersion Testing: Visual Observation Pencil Hardness Adhesion	MIL-DTL-53039 Sec 4.6.24	No Effect 4B 5B	No Effect >6H 5B

INTRODUCING A NEW APPROACH TO CARC

"The effectiveness of US military forces is highly dependent on the readiness (and safety) of the equipment and vehicles they use. Spray-applied coatings are used for many types of equipment, components and vehicles including aircraft, ground vehicles, water-borne vessels and ordnance. Improved......quality therefore results in reduced cost and readiness." Lea Ann Schellhorn, lowa Waste Reduction Center, Cedar Fall - Spray Technique Analysis and Research for Defense (STAR4D)

Multi-Functional Nanocoatings with Remarkable Properties


Assero Coating Technologies

20 De Boers Drive, Suite 202 Toronto, Ontario, M3J 0H1, Canada

info@assero.co www.assero.co

