Nano-Clear[®] - Third Party Test Results CHEMISTRY: 3D⁻⁹ Nano-Structured Polyurethane / Polyurea Hybrid

DESCRIPTION

Nano-Clear[®] Industrial Coating (NCI) platforms are synthesized nanostructured plural polymer hybrid clear coats in a single component package (1K). NCI's high crosslink density* is made possible by its 3D⁻⁹ spherical globular molecular architecture resulting in an extraordinary high number of cross-link reactive sites (32 to 128). Once fully cured, NCI coatings generate a very formidable matrix. * "Crosslinking can influence several end properties.....including: coating chemical resistance, polymer flow properties, coating toughness, coating flexibility, coating abrasion resistance...and much more." https:www.lubrizol.com/Coatings/Blog/2019/06/What-is-Crosslinking

TABLE 1

	TEST METHOD DETAILS			
	PRIMARY SPECIFICATIONS	TEST STANDARD	RESULTS	
1	VOC	ASTM D3960	1.25 lb / gal / - 150 g/l	1
2	Recommended Dry Film Thickness (DFT)	ASTM D5796	1.0mil - 2.5mils (/ 50.4µm to 63.5µm)	2
3	Coverage: 1 US Gal / 3.8 Ltr.	Nanovere Inhouse	1,122ft ² @1.0 mil	3
4	Specular Gloss: @ 20° / 60°	ASTM D523	86.0/92.2	4
	IN SERVICE PHYSICAL DAMAGE RESISTANCE	TEST STANDARD	RESULTS	
5	Abrasion Resistance by Taber: CS-17, 1 kg, 1,000 cycles	ASTM D4060	8.4 mg loss	5
6	Coating Hardness by Pencil Test: Scratch	ASTM D3363	4H	6
7	Coating Hardness by Pencil Test: Scratch	SASO 2833	2500 gm	7
8	Coating Hardness by Pencil Test: Gouge	ASTM D3363	5H	8
9	Coating Hardness by Pendulum Damping: Persoz	ASTM D4366	> 250 oscillations	9
10	Coating Rapid Deformation by Impact: 18°C Direct in./Ibs.	ASTM D2794	50 Pass/60 Fail	10
11	Coating Rapid Deformation by Impact: 18°C Reverse in./lbs.	ASTM D2794	10 Pass/20 Fail	11
12	Coating Rapid Deformation: Impact Strength	ASTM D2794	145 kg - cm	12
13	Impact Resistance: Single or Multi-coat Systems	SASO ISO 3248	1kg-160cm	13
14	Chip Resistance of Coatings: 23°C / 73.4°F @ 2.0 mils DFT	ASTM D3170	7A	14
15	Chip Resistance of Coatings: -29°C / -9.4°F @ 2.0 mils DFT	ASTM D3170	7B	15
16	Abrasion Resistance by Falling Abrasion: 100 liters	ASTM D968	Pass	16
17	Mar Resistance of Organic Coatings	ASTM D5178	5.0 kg	17
18	Flexibility - Conical Mandrel Bend	ATSM D522	1/4" Pass	18
19	Flexibility - Cylindrical Mandrel Bend	ASTM D522	Zero (0) - T	19
	ENVIRONMENTAL RESISTANCE	TEST STANDARD	RESULTS	
	Orabella d Verez ha Lana Enza a Dedebarra (1000 ha	SAE J1960	100% Gloss Retention	20
20	Controlled Xenon Arc-Lamp Exposure Resistance: 4,000 hrs	ASTMG155	99% Gloss Retention	
21	Fluorescent UV-Condensation Exposure: QUV313 > 1,500 hrs	ASTM D4587	100% Gloss Retention	21
22	Water Immersion Resistance: 240 hrs @ 50°C / 122°F	ISO 2812-2	Pass	22
23	Humidity Testing: @100% RH, 100°F / 37.8°C - 240 hrs	ASTMD1735-02	No loss of adhesion - No change	23
24	Corrosion Resistance: PASS240hrs@50°C / 122°F	JIS H8502	Pass	24
25	Salt Spray Fog: 6,360 hrs	ASTM B117 / 2018	No corrosion points - Approved	25
26	Thermal Shock Test for Achesion: Heat: @ 100°F / 37.8°C for 3 hrs, Freeze for 3 hrs, Stearn Blast for 30 Sec	GM9525P	No loss of adhesion - No Change	26
	CHEMICAL RESISTANCE	TEST STANDARD	RESULTS	
27	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Sulfuric Acid	ASTM D 1308	No effect	27
28	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Hydrochloric Acid	ASTM D 1308	No effect	28
29	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Sodium Hydroxide	ASTM D 1308	No effect	29
30	Effect of Household Chemicals on Clear & Pigmented Coatings: 10% Ammonium Hydroxide	ASTM D 1308	No effect	30
31	Effect of Household Chemicals on Clear & Pigmented Coatings: Isopropyl Alcohol	ASTM D 1308	No effect	31
		ASTM D 1308	No effect	32
32	Effect of Household Chemicals on Clear & Pigmented Coatings: Xylene	ASTIVI D 1306		
32 33	Effect of Household Chemicals on Clear & Higmented Coatings: Xylene Immersion Testing of Industrial Protective Coatings: Skydrol [®] 500Fluid	ASTM D 1308 ASTM D6943-A	No effect	33
				33 34
33	Immersion Testing of Industrial Protective Coatings: Skydrol® 500Fluid	ASTM D6943-A	No effect	

TABLE 2

DMA (Dynamic Mechanical Analysis)

		amournanyoro							
	SAMPLE PANEL TESTED E' @ 23°C/73.4°F MPA		MPA XL	XLD (Kmols/cc) Tg (°C)		Based on historical data XLD has a 95% confidence interval of ~ +/- 0.5			
36	Nano-Clear [®] (NCI)	2110		2.17	57.7	Based on historical data Tg has a 95% confidence interval of			
	UNIAXIAL EXTENSION (INST	RON)					-		
		YOUNG'S	YIELD	YIELD	STRESS @	STRAIN @	TOUGHNESS		
	SAMPLE PANEL TESTED	MODULUS MPa	STRAIN %	STRESS MPa	BREAK %	BREAK %	MPa		

1.3

1.6

High Cross-Link 3D[•]Molecule Inside**

Set

37 38

Q. What is DMA?

A. Dynamic Mechanical Analysis is performed by a Dynamic Mechanical Analyzer

35

0. What does a *DMA* do?

Nano-Clear® (NCI)

95% *Cl +/-

A. DMA measures the mechanical/rheological (crosslink density; XLD) properties of a material as a function of time, frequency, temperature, stress, and strain

0.14

NOTE: The Dynamic Mechanical Analyzer used for Table 2 tests, was a TA Instrument Q800 unit

1.5

5.09

0.59

*Confidence Intervals based on 5 tests of this sample

TABLE 3

		TEST METHO	D DETAILS		TES	ST STANDARD		
	•		d is a quantitative an					
	surface test metho	d that tests for a	antimicrobial activity	and efficacy	non-GLP Mo	dified JIS Z 2801Study		
							Percent (%) Reduction	Log10 Reduction
	Test	Contact				Average	Compared to 24 Hour	Compared to 24 Hour
	Microorganism	Time	Test Substrate	Replicate	CFU/Carrier	CFU/Carrier	Control	Control
			Control	1	3.30E+05			
39		Time	Glass Substrate	2	2.60E+05	2.80E+05	N/A	N/A
	E. coli	Zero		3	2.50E+05			
	ATCC 8739		Control	1	3.70E+05			
40			Glass Substrate	2	3.80E+05	3.97+05	N/A	N/A
		24		3	4.40E+05			
	S. aureus	Hours	Nano-Clear®	1	1.63E+02			
41	ATCC 6538		NCI 4.0	2	1.48E+02	4.87E+02	99.9993%	5.59
				3	1.15E+03			
			Nano-Clear®	1	3.03E+01			
42			NCI 5.0	2	6.00E+00	1.53E+01	99.99998%	6.87
				3	9.50E+00			

TABLE 4

TEST

SERIES

1

43

44 45

46

47

ANTI-ICE SCREENING			
	T-PANEL	NUMBER	SCOPE
TEST SAMPLE	(4" X 12")	OF	OF
INFO	SUBSTRATE	PANELS TESTED	TESTING
Control	Aluminum	2	Contact angle - ice de-bond (shedding)
NCI +NCFP@5%	Aluminum	1	Contact angle - ice de-bond (shedding)
VX-SC	Aluminum	1	Contact angle - ice de-bond (shedding)
VX+SC+5% Fluoropolymer	Aluminum	2	Contact angle - ice de-bond (shedding)
NCI+NCIM@30%+NCFP@5%	Aluminum	2	Contact angle - ice de-bond (shedding)

ICE /	FROST	BUILD	TESTING

- 1. Test sample panels were attached to the evap-cooler's fins along with thermo-couplers
- 2. Freezer door propped open by .5" for an 1 hour
- 3. Two pans of 40°C tap water (500 grams) was added and the freezer door was then closed shut
- 4. The closed freezer was run for 16 hours and monitored using a picolog with thermocouplers and a computer
- 5. After 16 hours of run time the amount of ice/frost generated on the test panels was evaluated

CONTACT ANGLE TEST R	ESULTS		ICE DE-BOND (SHEDDING) TEST RESUL		
TEST SAMPLE INFO	CONTACT ANGLE	TEST SERIES 2	TEST SAMPLE INFO	ICE DE-BOND (SHEDDING) TIME IN SECONDS	
Control	43.12°	48	Control	58s	
NCI +NCFP@5%	102.41°	49	NCI +NCFP@5%	32s	
VX-SC	103.15°	50	VX-SC	49s	
VX+SC+5% Fluoropolymer	98.535°	51	VX+SC+5% Fluoropolymer	47s	
NCI+NCIM@30%+NCFP@5%	101.07°	52	NCI+NCIM@30%+NCFP@5%	40.5s	

TABLE 5

SCRATCH TESTI	NG PARAMETERS								
			SCRATCH			SCRATCH			SCRATCH
SCRATCH		SCRATCH	SPEED	LOADING RATE	PRE/POST	TRACKS PER	SCRATCH TIP	TIP	TIP RADIUS
MODE	MAX. LOAD (N)	LENGTH (MM)	(mm/sec)	(N/min)	SCAN LOAD (N)	SAMPLE	TYPE	MATERIAL	(μM)
Progressive	100	2	2	200	1	3	Sphero-conical	Diamond	20
		T	EST REQUIREMENT	rs		SYS	TEM EMPLOYED F	<mark>or testing</mark>	

TEST STANDARDS

ASTM D7027: Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics using an Instrumented Scratch Machine ASTM D1624 Modified: Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing ASTM D7187 Modified: Method for Measuring Mechanistic Aspects of Scratch/Mar Behavior of Paint Coatings by Nanoscratching.

- 1. Room temperature microscratch experiment using a mircoscratch technique
- 2. The goal is to study and compare coating adhesion, strength / scratch resistance of the coatings through progressive scratch tests
- 3. The testing prodcedures follow a modified ASTM D7027 standard to scratch polymeric thin coatings with a diamond tip

- 1. An Anton Parr Revtest (Macro) Scratch System
- 2. The system was calibrated on 04/30/2021

- 3. A 100 µm radius diamond spherical tip was employed for the scratch measurements
- 4. The system and the scratch tip were validated on a TIN reference sample before the experiments were conducted on the Assero supplied samples conducted as a blind test (X vs Y)

	COMPARISO ROOM TEMP		AL LOADS O	F FAILURE	LC1	OPTIC	TIC COMPARISON OF CRITICAL LOADS O HEATED 8 HOURS @ 50°C- COOLED							
	TEST 1 SAMPLES	DATA 1	DATA 2	DATA 3	MEAN	STD DEV		TEST 2 SAMPLES	DATA 1	DATA 2	DATA 3	MEAN	STD DEV	
53	X*	38.393	38.032	37.962	38.129	0.231	55	X*	38.486	32.869	35.433	35.929	3.336	
54	Y**	43.622	42.386	45.551	43.853	1.595	56	Y**	1.294	1.338	1.963	1.532	0.374	
	NOTE: X* (subr	nitted sample	e) Nano-Clear	Gel-coated	fiberglass unsand	ded preapplication.	-	**Y (submitted san	nple) BASF D	C92 sanded	Gel-coated fi	breglass pre	application	

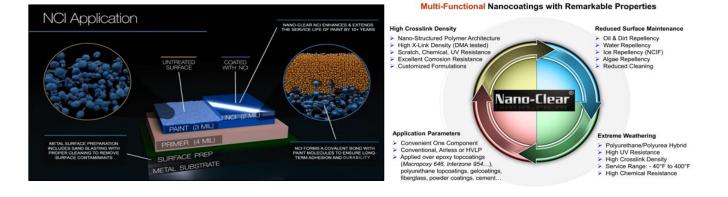
Why Micro-Scratch Testing?

"Data from the nano-scratch test also proved best for determining how well the coating responded to physical assault based on its crosslink density, the measure of how tightly the polymer components are bound together," *Sung said.

"With this molecular-level understanding, clearcoat formulas can be improved so that they yield materials dense enough to be scratch resistant and resilient but not so hard that they cannot be worked with easily.

"The researchers concluded that to get the truest evaluation of clearcoat performance, the nano-, micro- and macro-scratch tests should be conducted in conjunction with the current industry standard methods." *LI-Plin Sung NIST research Physicist

TABLE 6


NCI SuperCARCTM

	TEST METHOD DETAILS			
	OPTICAL PROPERTIES	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
57	Specular Gloss: @ 20° - 60° - 85	ASTM D534	0.7 - 3.6 - 7.4	0.6 - 1.3 - 7.8
58	Calculating color differences from instrumentally color measured color coordinates: L-, a-, b-	ASTM D2244	66.66 - 6.02 - 20.71	66.66 - 6.02 - 20.71
59	Measurement of spectral absorptance, reflectance, and transmittance: IR signature	ASTM E-903	PASS	PASS
	PHYSICAL PROPERTIES	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
60	Rating Adhesion by Tape Test	ASTM D3359	5B	5B
61	Rating Film Hardness by Pencil Test	ASTM D3363	2B	>6H
	CHEMICAL AND PHYSICAL DAMAGE RESISTANCE	TEST STANDARD	CONVENTIONAL CARC RESULTS	NCI SuperCARC (NCI +MAT) RESULTS
62	Acid Spot Resistance	MIL-DTL-53039E Sec 4.6.24	No Effect	No Effect
63 64	MEK Resistance Double rubs to substrate Double rubs to start of coating Dissolution	ASTM D4752	>200 20	>1,500 >1,500
65 66 67	Water Immersion Testing: Visual Observation Pencil Hardness Adhesion	MIL-DTL-53039 Sec 4.6.24	No Effect 4B 5B	No Effect >6H 5B

INTRODUCING A NEW APPROACH TO CARC

"The effectiveness of US military forces is highly dependent on the readiness (and safety) of the equipment and vehicles they use. Spray-applied coatings are used for many types of equipment, components and vehicles including aircraft, ground vehicles, water-borne vessels and ordnance. Improved.....quality therefore results in reduced cost and readiness." Lea Ann Schellhom, Iowa Waste Reduction Center, Cedar Fall - Spray Technique Analysis and Research for Defense (STAR4D)

NCI Best Practices

Assero Coating Technologies Inc. 20 De Boers Drive • Suite 202 Toronto, Ontario M3J 0H1 Canada ٩ 1.888.588.6986 \bowtie info@assero.co https://www.assero.co

